Towards quantitative connectivity analysis: reducing tractography biases
نویسندگان
چکیده
Diffusion MRI tractography is often used to estimate structural connections between brain areas and there is a fast-growing interest in quantifying these connections based on their position, shape, size and length. However, a portion of the connections reconstructed with tractography is biased by their position, shape, size and length. Thus, connections reconstructed are not equally distributed in all white matter bundles. Quantitative measures of connectivity based on the streamline distribution in the brain such as streamline count (density), average length and spatial extent (volume) are biased by erroneous streamlines produced by tractography algorithms. In this paper, solutions are proposed to reduce biases in the streamline distribution. First, we propose to optimize tractography parameters in terms of connectivity. Then, we propose to relax the tractography stopping criterion with a novel probabilistic stopping criterion and a particle filtering method, both based on tissue partial volume estimation maps calculated from a T1-weighted image. We show that optimizing tractography parameters, stopping and seeding strategies can reduce the biases in position, shape, size and length of the streamline distribution. These tractography biases are quantitatively reported using in-vivo and synthetic data. This is a critical step towards producing tractography results for quantitative structural connectivity analysis.
منابع مشابه
Tractometer: Towards validation of tractography pipelines
We have developed the Tractometer: an online evaluation and validation system for tractography processing pipelines. One can now evaluate the results of more than 57,000 fiber tracking outputs using different acquisition settings (b-value, averaging), different local estimation techniques (tensor, q-ball, spherical deconvolution) and different tracking parameters (masking, seeding, maximum curv...
متن کاملMicrostructure Informed Tractography: Pitfalls and Open Challenges
One of the major limitations of diffusion MRI tractography is that the fiber tracts recovered by existing algorithms are not truly quantitative. Local techniques for estimating more quantitative features of the tissue microstructure exist, but their combination with tractography has always been considered intractable. Recent advances in local and global modeling made it possible to fill this ga...
متن کاملAuditory and visual connectivity gradients in frontoparietal cortex
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether differ...
متن کاملAxTract: Toward microstructure informed tractography.
Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter...
متن کاملWhite matter microstructural abnormality in children with hydrocephalus detected by probabilistic diffusion tractography.
BACKGROUND AND PURPOSE Hydrocephalus is a severe pathologic condition in which WM damage is a major factor associated with poor outcomes. The goal of the study was to investigate tract-based WM connectivity and DTI measurements in children with hydrocephalus by using the probabilistic diffusion tractography method. MATERIALS AND METHODS Twelve children with hydrocephalus and 16 age-matched co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 98 شماره
صفحات -
تاریخ انتشار 2014